3.77 \(\int \frac{\text{sech}(c+d x)}{a+b \text{sech}^2(c+d x)} \, dx\)

Optimal. Leaf size=36 \[ \frac{\tan ^{-1}\left (\frac{\sqrt{a} \sinh (c+d x)}{\sqrt{a+b}}\right )}{\sqrt{a} d \sqrt{a+b}} \]

[Out]

ArcTan[(Sqrt[a]*Sinh[c + d*x])/Sqrt[a + b]]/(Sqrt[a]*Sqrt[a + b]*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0415728, antiderivative size = 36, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.095, Rules used = {4147, 205} \[ \frac{\tan ^{-1}\left (\frac{\sqrt{a} \sinh (c+d x)}{\sqrt{a+b}}\right )}{\sqrt{a} d \sqrt{a+b}} \]

Antiderivative was successfully verified.

[In]

Int[Sech[c + d*x]/(a + b*Sech[c + d*x]^2),x]

[Out]

ArcTan[(Sqrt[a]*Sinh[c + d*x])/Sqrt[a + b]]/(Sqrt[a]*Sqrt[a + b]*d)

Rule 4147

Int[sec[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff = Fr
eeFactors[Sin[e + f*x], x]}, Dist[ff/f, Subst[Int[ExpandToSum[b + a*(1 - ff^2*x^2)^(n/2), x]^p/(1 - ff^2*x^2)^
((m + n*p + 1)/2), x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[(m - 1)/2] && IntegerQ[n
/2] && IntegerQ[p]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\text{sech}(c+d x)}{a+b \text{sech}^2(c+d x)} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{1}{a+b+a x^2} \, dx,x,\sinh (c+d x)\right )}{d}\\ &=\frac{\tan ^{-1}\left (\frac{\sqrt{a} \sinh (c+d x)}{\sqrt{a+b}}\right )}{\sqrt{a} \sqrt{a+b} d}\\ \end{align*}

Mathematica [A]  time = 0.0652231, size = 36, normalized size = 1. \[ \frac{\tan ^{-1}\left (\frac{\sqrt{a} \sinh (c+d x)}{\sqrt{a+b}}\right )}{\sqrt{a} d \sqrt{a+b}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sech[c + d*x]/(a + b*Sech[c + d*x]^2),x]

[Out]

ArcTan[(Sqrt[a]*Sinh[c + d*x])/Sqrt[a + b]]/(Sqrt[a]*Sqrt[a + b]*d)

________________________________________________________________________________________

Maple [B]  time = 0.047, size = 82, normalized size = 2.3 \begin{align*}{\frac{1}{d}\arctan \left ({\frac{1}{2} \left ( 2\,\tanh \left ( 1/2\,dx+c/2 \right ) \sqrt{a+b}+2\,\sqrt{b} \right ){\frac{1}{\sqrt{a}}}} \right ){\frac{1}{\sqrt{a}}}{\frac{1}{\sqrt{a+b}}}}+{\frac{1}{d}\arctan \left ({\frac{1}{2} \left ( 2\,\tanh \left ( 1/2\,dx+c/2 \right ) \sqrt{a+b}-2\,\sqrt{b} \right ){\frac{1}{\sqrt{a}}}} \right ){\frac{1}{\sqrt{a}}}{\frac{1}{\sqrt{a+b}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sech(d*x+c)/(a+b*sech(d*x+c)^2),x)

[Out]

1/d/(a+b)^(1/2)/a^(1/2)*arctan(1/2*(2*tanh(1/2*d*x+1/2*c)*(a+b)^(1/2)+2*b^(1/2))/a^(1/2))+1/d/(a+b)^(1/2)/a^(1
/2)*arctan(1/2*(2*tanh(1/2*d*x+1/2*c)*(a+b)^(1/2)-2*b^(1/2))/a^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\operatorname{sech}\left (d x + c\right )}{b \operatorname{sech}\left (d x + c\right )^{2} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)/(a+b*sech(d*x+c)^2),x, algorithm="maxima")

[Out]

integrate(sech(d*x + c)/(b*sech(d*x + c)^2 + a), x)

________________________________________________________________________________________

Fricas [B]  time = 2.31261, size = 1291, normalized size = 35.86 \begin{align*} \left [-\frac{\sqrt{-a^{2} - a b} \log \left (\frac{a \cosh \left (d x + c\right )^{4} + 4 \, a \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{3} + a \sinh \left (d x + c\right )^{4} - 2 \,{\left (3 \, a + 2 \, b\right )} \cosh \left (d x + c\right )^{2} + 2 \,{\left (3 \, a \cosh \left (d x + c\right )^{2} - 3 \, a - 2 \, b\right )} \sinh \left (d x + c\right )^{2} + 4 \,{\left (a \cosh \left (d x + c\right )^{3} -{\left (3 \, a + 2 \, b\right )} \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right ) - 4 \,{\left (\cosh \left (d x + c\right )^{3} + 3 \, \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{2} + \sinh \left (d x + c\right )^{3} +{\left (3 \, \cosh \left (d x + c\right )^{2} - 1\right )} \sinh \left (d x + c\right ) - \cosh \left (d x + c\right )\right )} \sqrt{-a^{2} - a b} + a}{a \cosh \left (d x + c\right )^{4} + 4 \, a \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{3} + a \sinh \left (d x + c\right )^{4} + 2 \,{\left (a + 2 \, b\right )} \cosh \left (d x + c\right )^{2} + 2 \,{\left (3 \, a \cosh \left (d x + c\right )^{2} + a + 2 \, b\right )} \sinh \left (d x + c\right )^{2} + 4 \,{\left (a \cosh \left (d x + c\right )^{3} +{\left (a + 2 \, b\right )} \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right ) + a}\right )}{2 \,{\left (a^{2} + a b\right )} d}, \frac{\sqrt{a^{2} + a b} \arctan \left (\frac{a \cosh \left (d x + c\right )^{3} + 3 \, a \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{2} + a \sinh \left (d x + c\right )^{3} +{\left (3 \, a + 4 \, b\right )} \cosh \left (d x + c\right ) +{\left (3 \, a \cosh \left (d x + c\right )^{2} + 3 \, a + 4 \, b\right )} \sinh \left (d x + c\right )}{2 \, \sqrt{a^{2} + a b}}\right ) + \sqrt{a^{2} + a b} \arctan \left (\frac{\sqrt{a^{2} + a b}{\left (\cosh \left (d x + c\right ) + \sinh \left (d x + c\right )\right )}}{2 \,{\left (a + b\right )}}\right )}{{\left (a^{2} + a b\right )} d}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)/(a+b*sech(d*x+c)^2),x, algorithm="fricas")

[Out]

[-1/2*sqrt(-a^2 - a*b)*log((a*cosh(d*x + c)^4 + 4*a*cosh(d*x + c)*sinh(d*x + c)^3 + a*sinh(d*x + c)^4 - 2*(3*a
 + 2*b)*cosh(d*x + c)^2 + 2*(3*a*cosh(d*x + c)^2 - 3*a - 2*b)*sinh(d*x + c)^2 + 4*(a*cosh(d*x + c)^3 - (3*a +
2*b)*cosh(d*x + c))*sinh(d*x + c) - 4*(cosh(d*x + c)^3 + 3*cosh(d*x + c)*sinh(d*x + c)^2 + sinh(d*x + c)^3 + (
3*cosh(d*x + c)^2 - 1)*sinh(d*x + c) - cosh(d*x + c))*sqrt(-a^2 - a*b) + a)/(a*cosh(d*x + c)^4 + 4*a*cosh(d*x
+ c)*sinh(d*x + c)^3 + a*sinh(d*x + c)^4 + 2*(a + 2*b)*cosh(d*x + c)^2 + 2*(3*a*cosh(d*x + c)^2 + a + 2*b)*sin
h(d*x + c)^2 + 4*(a*cosh(d*x + c)^3 + (a + 2*b)*cosh(d*x + c))*sinh(d*x + c) + a))/((a^2 + a*b)*d), (sqrt(a^2
+ a*b)*arctan(1/2*(a*cosh(d*x + c)^3 + 3*a*cosh(d*x + c)*sinh(d*x + c)^2 + a*sinh(d*x + c)^3 + (3*a + 4*b)*cos
h(d*x + c) + (3*a*cosh(d*x + c)^2 + 3*a + 4*b)*sinh(d*x + c))/sqrt(a^2 + a*b)) + sqrt(a^2 + a*b)*arctan(1/2*sq
rt(a^2 + a*b)*(cosh(d*x + c) + sinh(d*x + c))/(a + b)))/((a^2 + a*b)*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\operatorname{sech}{\left (c + d x \right )}}{a + b \operatorname{sech}^{2}{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)/(a+b*sech(d*x+c)**2),x)

[Out]

Integral(sech(c + d*x)/(a + b*sech(c + d*x)**2), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)/(a+b*sech(d*x+c)^2),x, algorithm="giac")

[Out]

Exception raised: TypeError